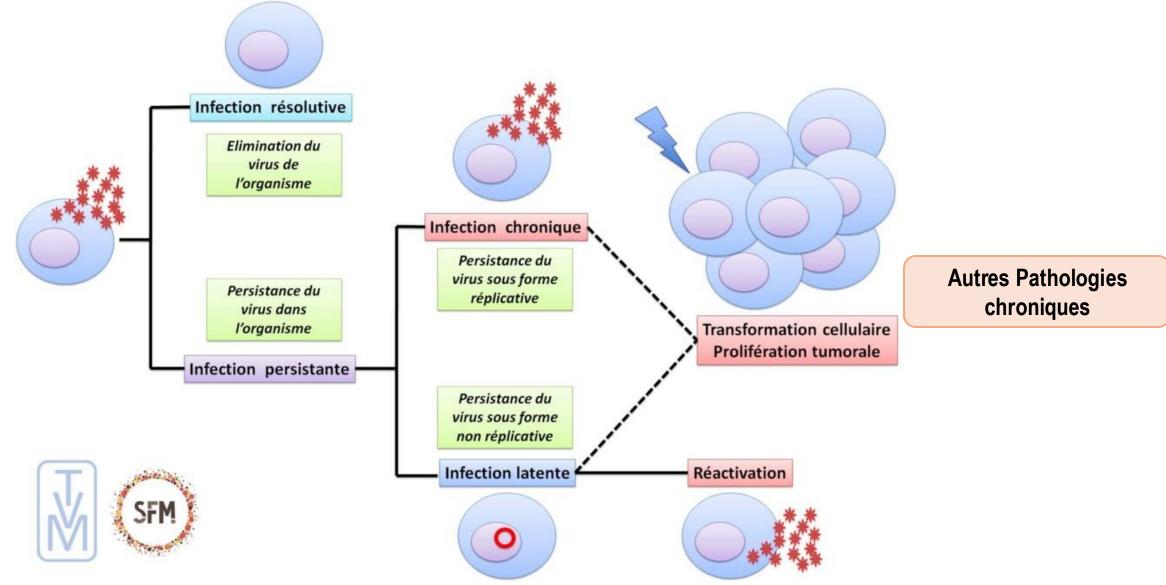


VIRUS ET PATHOLOGIES CHRONIQUES

E.K. ALIDJINOU, MD, PhD Université de Lille, CHU de Lille

JRPI 2025

Lille, le 7 octobre 2025


Pas de conflits d'intérêt en rapport avec cette présentation

Virus: au-delà de l'infection aiguë...

Infections virales aiguës: épidémies et pandémies

Virus: au-delà de l'infection aiguë...

Virus: au-delà de l'infection aiguë...

Les virus sont des grands modulateurs de la biologie cellulaire

- Altération des voies de signalisation cellulaire
- Reprogrammation du métabolisme cellulaire
- Manipulation du cycle cellulaire et de l'apoptose
- Modulation du trafic intracellulaire
- Subversion de l'immunité cellulaire

• • •

Quelles maladies chroniques?

Infections virales chroniques

Infection VIH (immunodépression et activation immunitaire...)

Hépatites virales chroniques (VHB, VHC, VHD)

Infection latente/réactivation (Herpesviridae, Polyomaviridae)

Paraparésie spastique tropicale: HTLV-1

Quelles maladies chroniques?

Virus et cancers

15% des cancers humains

Virus		Cancers
ADN	EBV	Burkitt, Hodgkin, LNH, cancer nasopharyngé
	HPV	Cancer du col, cancer de l'anus, cancers VADS
	VHB	Cancer du foie
	HHV8	Sarcome de Kaposi
	MCPyV	Carcinome à cellules de Merkel
ARN	HTLV-1	Leucémie/Lymphome à cellules T de l'adulte
	VHC	Cancer du foie

Plusieurs autres associations discutées...

WELCOME TO THE GRAY ZONE!

WRITTEN, DIRECTED AND PRODUCED BY KAZALI A. ('THE KAZE')

Quelles maladies chroniques?

Atteintes neurologiques

Maladies neurodégénératives (HSV-1) Syndrome de fatigue chronique (EBV, HHV-6, EV)

Atteintes inflammatoires

Cardiomyopathie dilatée (CVB, CMV)
Asthme, BPCO (virus respiratoires)
MICI - Crohn, RCH - (Norovirus, CMV)

VIRUS

COVID long SARS-CoV-2

Maladies auto-immunes

Diabète de type 1 (Coxsackievirus B) Sclérose en plaque (EBV) Thyroïdites auto-immunes, Polyarthrite rhumatoïde

Lien entre virus et maladies chroniques...

Association et lien de causalité...

Postulats de Koch

- Le micro-organisme souffrant de la maj
- Le micro-organisme pur (ne contenant c
- Le micro-organisme de laboratoire sens
- Le micro-organisme do malade puis identifié con

se dans tous les organismes s sains.

e en milieu de culture

maladie chez un animal

nouvel organisme hôte rendu l'agent infectieux original.

Lien entre virus et maladies chroniques...

Association et lien de causalité...

Critères de Bradford Hill

- Force de l'association
- Stabilité de l'association
- Spécificité
- Temporalité
- Gradient biologique

Critères de Bradford Hill

- Plausibilité
- Cohérence
- Preuve expérimentale
- Analogie

Quelles maladies chroniques?

Atteintes neurologiques

Maladies neurodégénératives (HSV-1) Syndrome de fatigue chronique (EBV, HHV-6, EV)

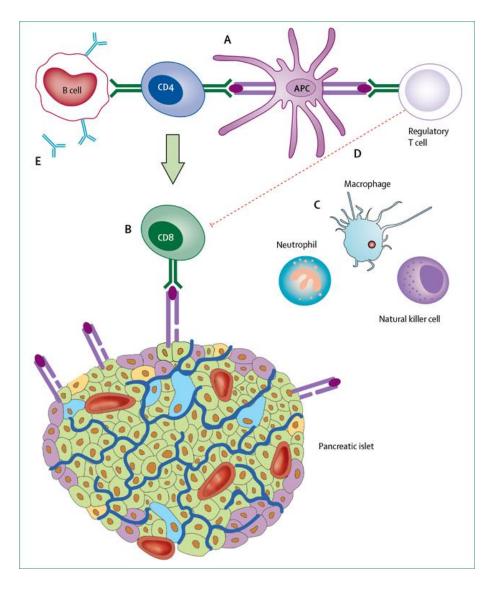
Atteintes inflammatoires

Cardiomyopathie dilatée (CVB, CMV)
Asthme, BPCO (virus respiratoires)
MICI - Crohn, RCH - (Norovirus, CMV)

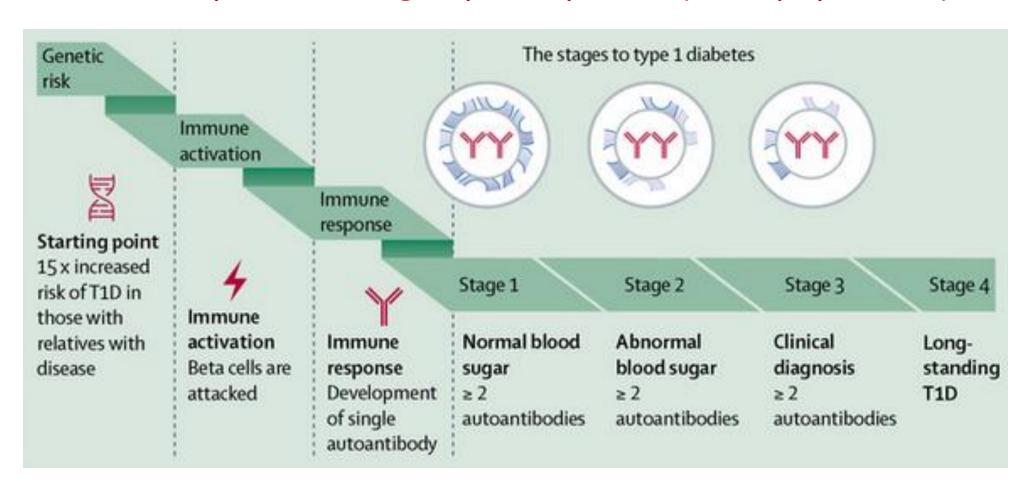
VIRUS

COVID long SARS-CoV-2

Maladies auto-immunes

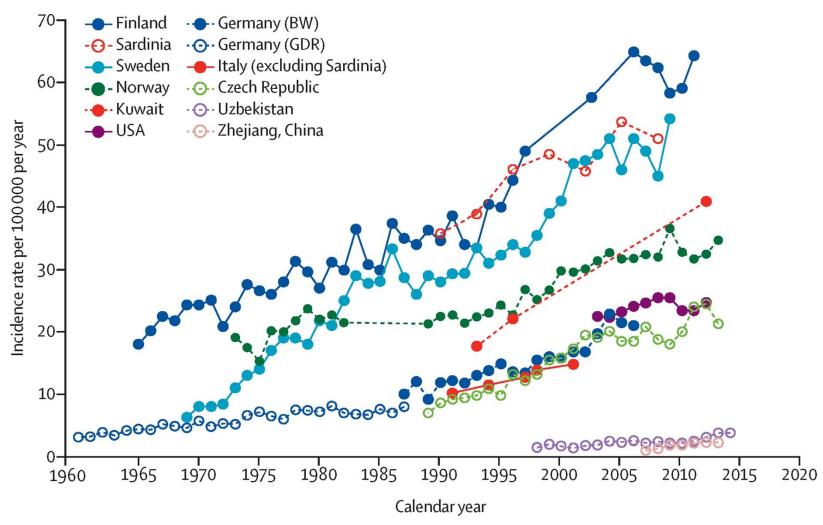

Diabète de type 1 (Coxsackievirus B)
Sclérose en plaque (EBV)
Thyroïdites auto-immunes, Polyarthrite rhumatoïde

- Maladie chronique → défaut de production d'insuline
- Destruction/altération de fonction sélective des cellules ß du pancréas.
- Maladie auto-immune

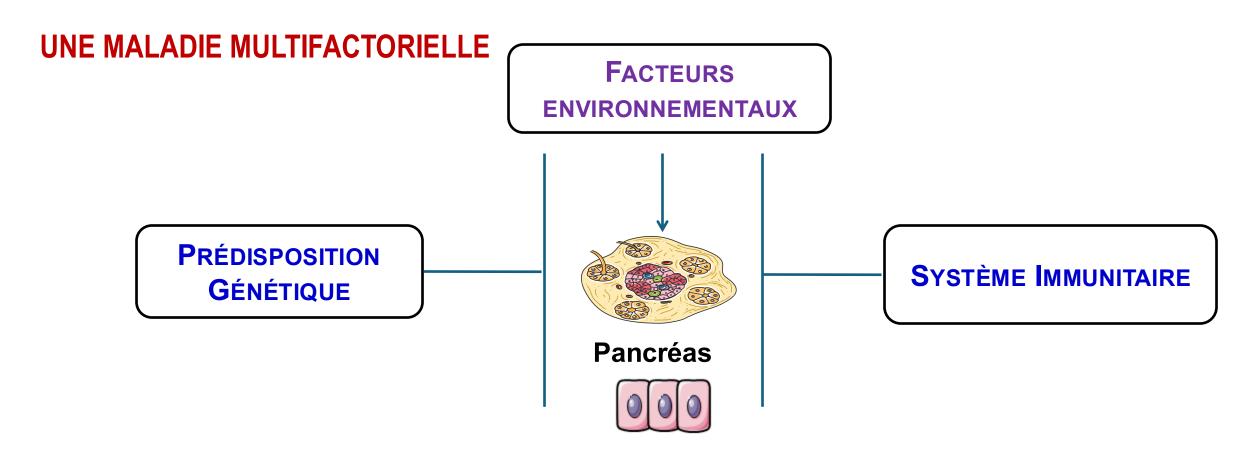


Bluestone et al, Nature . 2010

Complete islet destruction


DiMeglio et al, Lancet. 2018

Survenue après une longue phase préclinique asymptomatique



- Anti-Insuline (IAA)
- Anti-GAD (GADA)
- Anti-IA2 (IA-2A)
- Anti-ZnT8A

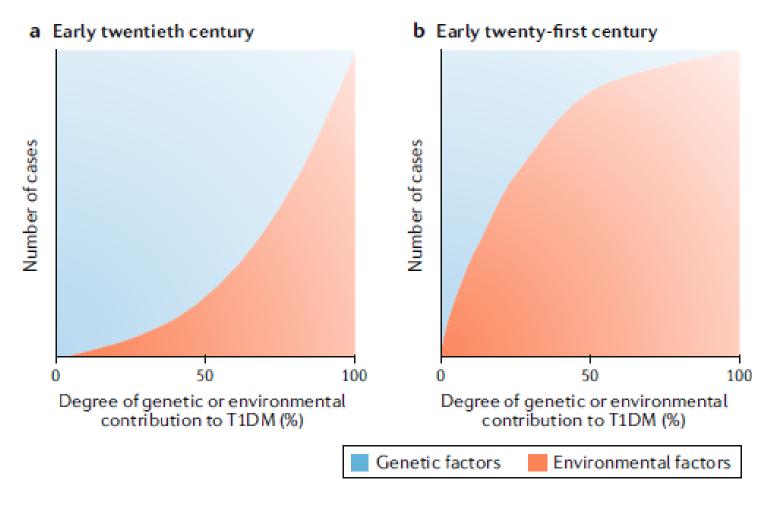
Une augmentation de l'incidence au niveau mondial

Norris et al, Lancet Diabetes Endocrinol. 2020

Diabète de Type 1

LA PRÉDISPOSITION GÉNÉTIQUE NE PEUT PAS TOUT EXPLIQUER

HLA: Haplotypes DR3-DQ2 et DR4-DQ8

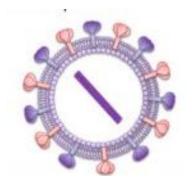

- La plus forte association en Europe
- Environ 40% des cas de DT1

Non-HLA: INS, PTPN22, IFIH1 and CTLA4

- 2.5 7% pour enfants de parents DT1
- 3 8% frère/sœur DT1
- Concordance entre homozygotes: 30-65%
- Variations géographiques; saisonnalité
- Etudes sur les migrants

Stene LC, 2023; Ilonen et al, Nat Rev Endocrinol 2019; Redondo et al, NEJM. 2008

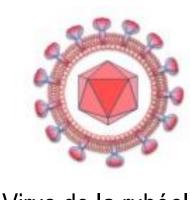
L'impact des facteurs environnementaux de plus en plus important!



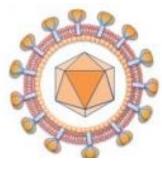
- Régime alimentaire
- Médicaments
- Toxines
- VIRUS

Ilonen et al, Nat Rev Endocrinol 2019

Virus et diabète de type 1...


Beaucoup d'appelés, peu d'élus ...

Virus des oreillons



Rétrovirus endogènes

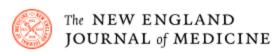
Virus de la rubéole

Cytomegalovirus

Rotavirus

DONNÉES SCIENTIFIQUES IMPORTANTES

Une association historique... avec des approches sérologiques

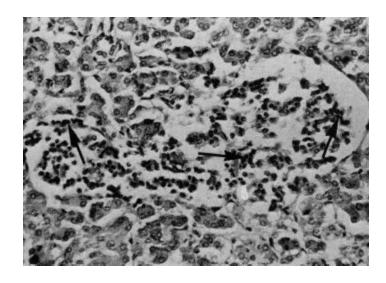

Viral Antibodies in Diabetes Mellitus

D. R. GAMBLE,* M.B., M.C.PATH., DIP.BACT.; M. L. KINSLEY,† F.I.M.L.T.; M. G. FITZGERALD,‡ M.D., F.R.C.P. R. BOLTON,§ M.B., F.R.C.P.; K. W. TAYLOR,|| M.D., PH.D.

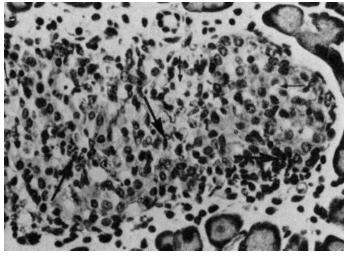
British Medical Journal, 1969, 3, 627-630

Summary: Sera from 123 patients with diabetes mellitus of recent onset, 155 patients with diabetes of more than two years' duration, and 250 normal persons were collected over a period of two and a half years. All sera were tested for neutralizing antibody to Coxsackie virus types B1-6, and a sample was tested for complement-fixing antibody to a number of viral, rickettsial, and mycoplasmal antigens.

In diabetics of recent onset no evidence was found of any excess of antibodies to mumps virus or some common respiratory viruses. Insulin-dependent diabetes within three months of onset were found to have higher antibody titres to Coxsackie B virus, particularly of type B4, than either normal subjects or patients with diabetes of longer duration.



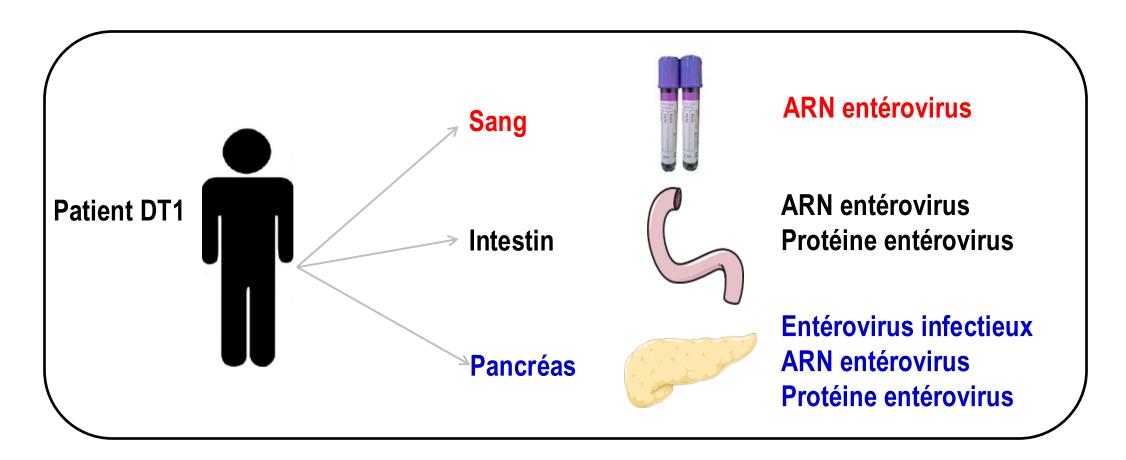
May 24, 1979


N Engl J Med 1979; 300:1173-1179 DOI: 10.1056/NEJM197905243002102

Virus-Induced Diabetes Mellitus — Isolation of a Virus from the Pancreas of a Child with Diabetic Ketoacidosis

Ji-Won Yoon, Ph.D., Marshall Austin, M.D., Ph.D., Takashi Onodera, Ph.D., and Abner Louis Notkins, M.D.

Pancréas patient



Pancréas souris

- Isolement de CVB4 du pancréas de l'enfant
- Inoculation à la souris → Diabète
- Isolement de CVB4 du pancréas de la souris

Yoon et al, N Engl J Med.1979 May 24

Détection plus fréquente des entérovirus chez les patients DT1

Hober et sauter, 2010; Yeung et al., 2011; Hober et Alidjinou, 2013

Favours

control

Détection plus fréquente des entérovirus chez les patients DT1: Méta-

analyse Events/total Weight **Odds** ratio Cases Controls Odds ratio (95% CI) (%) (95% CI) **Newly diagnosed diabetes** Total 26 études: jusqu'à 2010 12.73 (6.43 to 25) 261/613 45/747 Subtotal (95% CI) Test for heterogeneity: τ^2 =0.75, χ^2 =26.87, df=11, 4448 sujets Established diabetes • 1931 cas Subtotal (95% CI) 125/485 28/418 10.83 (3.99 to 29) Test for heterogeneity: $\tau^2=1.16$, $\chi^2=20.93$, df=8, 2517 contrôles **Eventual diabetes** 27/647 15/634 Subtotal (95% CI) 1.25 (0.23 to 6.93) Auto-immunité: OR=3.7 Test for heterogeneity: τ^2 =0.85, χ^2 =1.60, df=1, 100 9.77 (5.50 to 17.35) Total (95% CI) 413/1745 88/1799 Total events: 122 (treatment), 118 (control) Diabète de type 1: OR=9.8 Test for heterogeneity: τ^2 =1.09, χ^2 =70.61, df=22, $P<0.001, I^2=69\%$ 0.005 0.1 10 200 Test for overall effect: z=7.78, P<0.001

Favours

case

Détection plus fréquente des entérovirus chez les patients DT1: Métaanalyse

Association Between *Enterovirus*Infection and Type 1 Diabetes
Risk: A Meta-Analysis of 38
Case-Control Studies

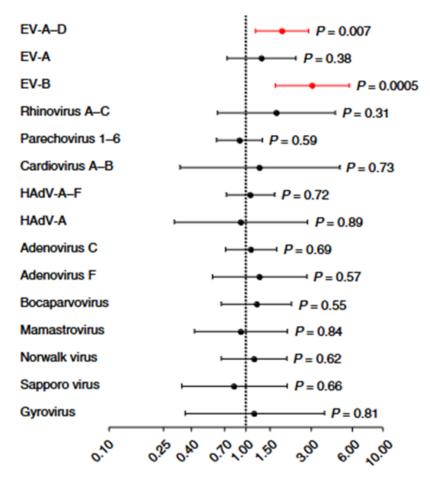
Kan Wang^{1,2*†}, Fei Ye^{3*†}, Yong Chen^{1,2}, Jianxin Xu^{1,2}, Yufang Zhao^{1,2}, Yeping Wang^{1,2} and Tian Lan^{1,2}

Total 38 études: jusqu'en 2020

5921 sujets

- 2841 cas
- 3080 contrôles

- Association EV/DT1: OR = 7.8
- Association quelle que soit l'origine (Europe, Afrique, Asie, Australie, Amérique latine)
- Association avec échantillons sang mais pas avec les selles


Virome et risque de développement de l'auto-immunité

Prospective virome analyses in young children at increased genetic risk for type 1 diabetes

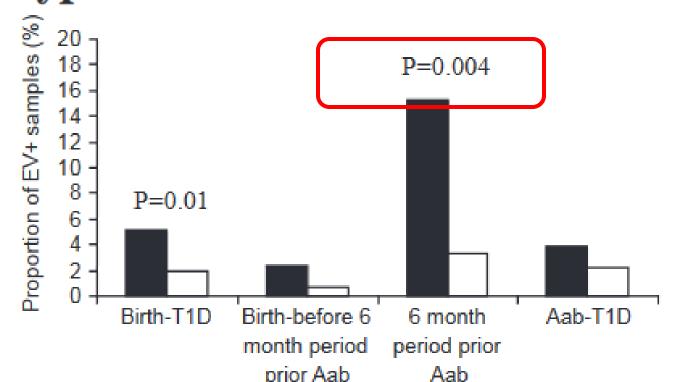
Kendra Vehik ¹*, Kristian F. Lynch¹, Matthew C. Wong², Xiangjun Tian², Matthew C. Ross², Richard A. Gibbs³, Nadim J. Ajami², Joseph F. Petrosino², Marian Rewers⁴, Jorma Toppari^{5,6}, Anette G. Ziegler^{7,8,9}, Jin-Xiong She¹⁰, Ake Lernmark ¹1, Beena Akolkar¹², William A. Hagopian¹³, Desmond A. Schatz¹⁴, Jeffrey P. Krischer¹, Heikki Hyöty^{15,16}, Richard E. Lloyd² and the TEDDY Study Group¹⁷

Association de l'auto-immunité anti-ilôts avec la detection prolongée des EV-B, plutôt qu'une detection ponctuelle

Détection ARN entérovirus dans le sang et progression vers l'auto-immunité

Etudes prospectives

Enterovirus Infection and Progression From Islet Autoimmunity to Type 1 Diabetes

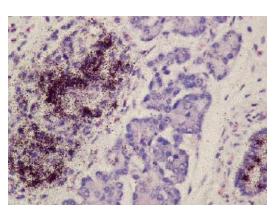

The Diabetes and Autoimmunity Study in the Young (DAISY)

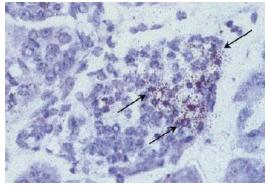
Progression from islet autoimmunity to clinical type 1 diabetes in sample interval (median ~4 months) following infection detected by enterovirus RNA in serum or rectal swab sample								
Type of sample	Cases progressing Person-years to type 1 diabetes Unadjusted H of follow-up in interval* (95% CI)			HR (95% CI) adjusted for islet autoantibodies				
Serum								
No enterovirus RNA in previous sample	494	33	1.00 (ref.)	1.00 (ref.)				
Enterovirus RNA in previous sample	6.5	3	6.36 (1.89-21.4)†	7.02 (1.95–25.3)				

Détection ARN entérovirus dans le sang associé à la progression vers DT1

Etudes prospectives

Enterovirus RNA in Blood Is Linked to the Development of Type 1 Diabetes


Détection EV plus fréquente 6 mois avant la séroconversion

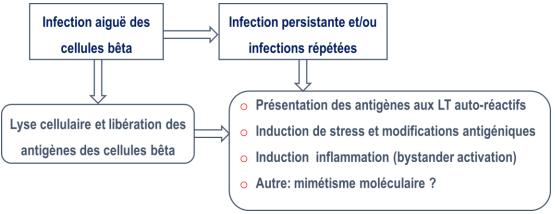

Oikarinen et al, Diabetes. 2011

Difficulté d'étudier l'infection dans le pancréas...

Données d'autopsies

Etudes	Cas	Contrôles
Ylipaasto et al, Diabetologia, 2004	5/65	0/40
Richardson et al, Diabetologia, 2009	44/72	3/50

Données de biopsies sur sujets vivants


Live enteroviruses, but not other viruses, detected in human pancreas at the onset of type 1 diabetes in the DiViD study

Lars Krogvold ^{1,2} • Angelo Genoni • Anna Puggioni • Daniela Campani • Sarah J. Richardson • Christine S. Flaxman • Bjørn Edwin • Trond Buanes • Knut Dahl-Jørgensen ^{1,7} • Antonio Toniolo • Oniolo •

Group	Case	RNA viruses										
		HCV	HAV	Mumps	Rubella	Influenza A/B	Parainfluenza 1–4	RSV	Astrovirus	Norovirus	Rotavirus	EV
T1D cases at the clinical	DiViD-1	_	_	_	_	_	_	_	_	_	-	РО
onset	DiViD-2	_	_	_	_	_	_	_	_	_	-	PO
	DiViD-3	_	_	_	_	_	_	_	_	_	-	PO
	DiViD-4	_	_	_	_	_	_	_	_	_	-	PO
	DiViD-5	_	_	_	_	_	_	_	_	_	-	PO
	DiViD-6	_	_	_	_	_	_	_	-	_	_	PO
Non-diabetic cases of	LPN-01	-	-	_	_	_	_	-	_	-	_	PO
pancreatic	LPN-03	_	_	_	_	_	_	_	-	_	_	_
adenocarcinoma	LPN-08	_	-	_	_	_	_	_	-	_	-	_
	LPN-11	_	_	_	_	_	_	_	-	-	-	_
	LPN-14	_	_	_	_	_	_	_	-	_	-	-
	LPN-15	_	_	_	_	_	_	_	-	_	_	PO
	LPN-17	-	_	-	_	-	_	_	_	-	-	-
	LPN-19	-	-	_	_	-	-	-	-	-	-	-
	LPN-21	-	-	_	_	_	-	_	-	-	_	-
	LPN-27	-	-	-	-	-	-	_	-	-	-	-
	LPN-31	_	_	_	_	_	_	_	_	_	_	_

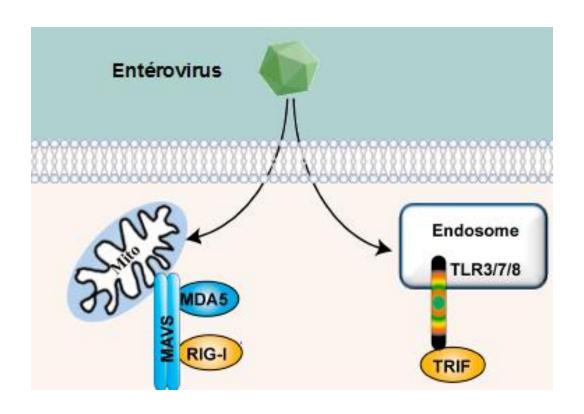
De l'association à la causalité ...

- Infection persistante/répétée
- Inflammation → auto-immunité
- T CD8 auto-réactifs préexistants

Initiation/aggravation

Nekoua et al, Nat Rev Endocrinol 2022; Carré et al, Endocr Rev 2023

Une base génétique à la modulation de la réponse immunitaire aux EV


Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses,

Protect against Type 1 Diabetes

IFIH1 code pour MDA5, un senseur de l'immunité innée impliquée dans la réponse aux entérovirus

Nejentsev et al, Science. 2009

Variants protecteurs: diminution expression de MDA5 et profil particulier réponse aux EV

Lei et al, Viruses. 2016

Un tropisme pancréatique connu (cellules bêta) pour les EV notamment les CV-B

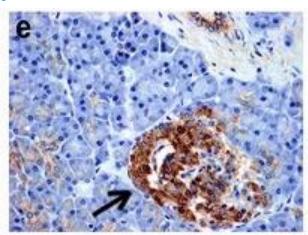
Une expression du récepteur CAR plus importante chez les patients DT1

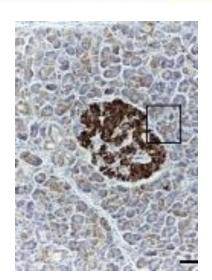
Analysis of pancreas tissue in a child positive for islet cell antibodies

M. Oikarinen · S. Tauriainen · T. Honkanen · K. Vuori ·

P. Karhunen · C. Vasama-Nolvi · S. Oikarinen ·

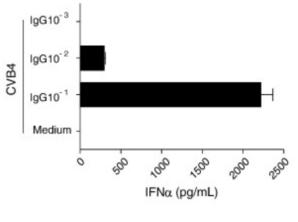
C. Verbeke · G. E. Blair · I. Rantala · J. Ilonen ·

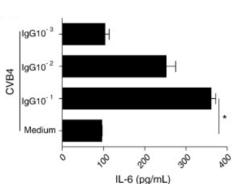

O. Simell · M. Knip · H. Hyöty

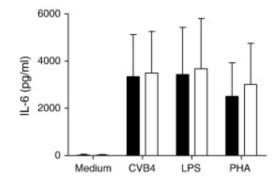

Oikarinen et al, Diabetologia 2008

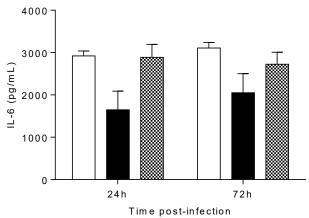
Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells

Eseoghene Ifie¹ · Mark A. Russell¹ · Shalinee Dhayal¹ · Pia Leete¹ · Guido Sebastiani² · Laura Nigi² · Francesco Dotta² · Varpu Marjomäki³ · Decio L. Eizirik⁴ · Noel G. Morgan¹ · Sarah J. Richardson¹

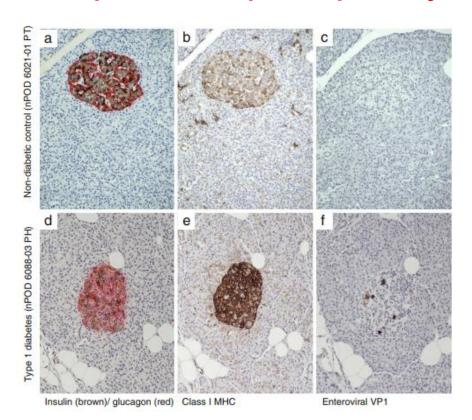

Ifie et al, Diabetologia 2018






Les EV ont un potentiel inflammatoire

Une facilitation de l'infection des monocytes circulants par des anticorps non-neutralisants

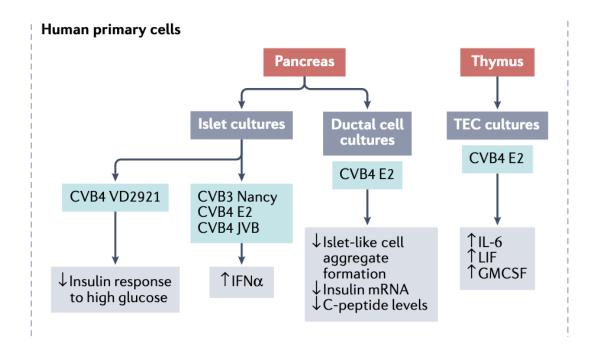

Inflammation +++

Des taux élevées d'IFN-alpha observés chez des patients atteints de

DT1avec une détection d'EV dans le sang / Signature IFN type 1

Anatomo-pathologie:

une persistance plutôt qu'une lyse aiguë



Richardson et al, Endocrinol Pathol 2014

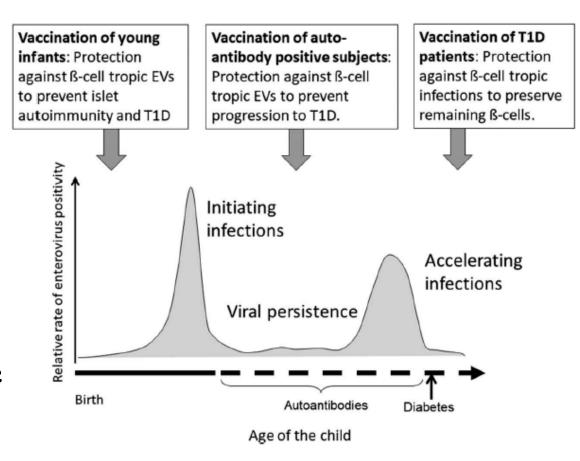
NATURE REVIEWS | ENDOCRINOLOGY

Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus

Magloire Pandoua Nekoua, Enagnon Kazali Alidjinou, and Didier Hober

Entérovirus et DT1: perspectives...

La vaccination ???


Nature Reviews Endocrinology 2018

Diabetes

Towards a coxsackievirus B-based vaccine to combat T1DM

Didier Hober [™] & Enagnon Kazali Alidjinou

- Apporter la preuve du lien de causalité
- Prévenir l'initiation de l'auto-immunité
- Prévenir la progression vers le diabète de type
 1

Hyoty et al, Expert Rev Vaccines. 2018

Entérovirus et DT1: perspectives...

Des résultats prometteurs sur modèle animal avec des vaccins anti-CVB

A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes

Virginia M. Stone^{1,2} · Minna M. Hankaniemi² · Emma Svedin¹ · Amirbabak Sioofy-Khojine² · Sami Oikarinen² · Heikki Hyöty^{2,3} · Olli H. Laitinen² · Vesa P. Hytönen^{2,3} · Malin Flodström-Tullberg^{1,2}

SCIENCE ADVANCES | RESEARCH ARTICLE

IMMUNOLOGY

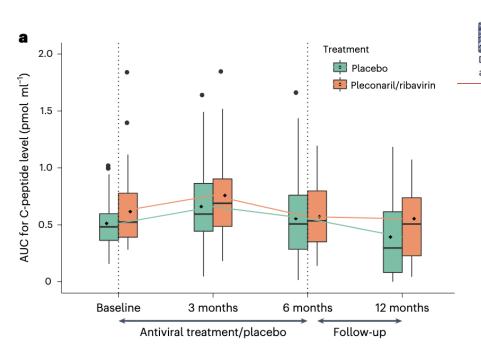
A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates

V. M. Stone^{1,2*}, M. M. Hankaniemi^{2*}, O. H. Laitinen², A. B. Sloofy-Khojine², A. Lin³, I. M. Diaz Lozano¹, M. A. Mazur¹, V. Marjomäkl⁴, K. Loré³, H. Hyöty^{2,5}, V. P. Hytönen^{2,5*}, M. Flodström-Tuliberg^{1,2*†}

Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect

Virginia M. Stone,¹ Marta Butrym,¹ Minna M. Hankaniemi,² Amir-Babak Sioofy-Khojine,² Vesa P. Hytönen,^{2,3} Heikki Hyöty,^{2,3} and Malin Flodström-Tullberg¹

Diabetes 2021;70:2871-2878 | https://doi.org/10.2337/db21-0193


A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models

Pär G. Larsson • Tadepally Lakshmikanth • Olli H. Laitinen • Renata Utorova • Stella Jacobson • Maarit Oikarinen • Erna Domsgen • Minni R. L. Koivunen • Pascal Chaux • Nicolas Devard • Valerie Lecouturier • Jeffrey Almond • Mikael Knip • Heikki Hvötv • Malin Flodström-Tullberg

Entérovirus et DT1: perspectives...

Un traitement antiviral ???

Pleconaril and ribavirin in new-onset type 1 diabetes: a phase 2 randomized trial

Krogvold et al, Nat Med . 2023

Drug name	CC ₅₀ , µМ	ED ₅₀ *							
		Unit	CVB1	CVB2	CVB3	CVB4	CVB5	CVB6	SI^{\dagger}
Azithromycin	577	μМ	NE	NE	32	NE	NE	NE	18
Enviroxime	58	μM	0.2	0.2	0.3	0.1	0.2	0.1	193
Favipiravir	1069	μM	363	98	141	NE	164	380	2.8
Fluoxetine	60	μM	8.1	5.2	5.7	6.2	3.6	7.1	7
Guanidine hydrochloride	1785	μM	4.4	4.2	4.4	2.9	2.8	6.0	297
Hizentra	NC	mg/ml	0.2	0.04	0.02	NC	NC	1.4	NC
Itraconazole	2498	μM	5.9	4.0	2.4	6.9	7.2	8.0	312
Lovastatin	80	μM	NE	0.1	NE	NE	NE	NE	800
Norfluoxetine	90	μM	6.7	4.8	5.5	4.5	3.3	6.3	13
Pleconaril	3111	μM	0.1	0.5	NE	0.3	0.04	0.3	6222
Ribavirin	8	nМ	620	230	320	300	160	410	13

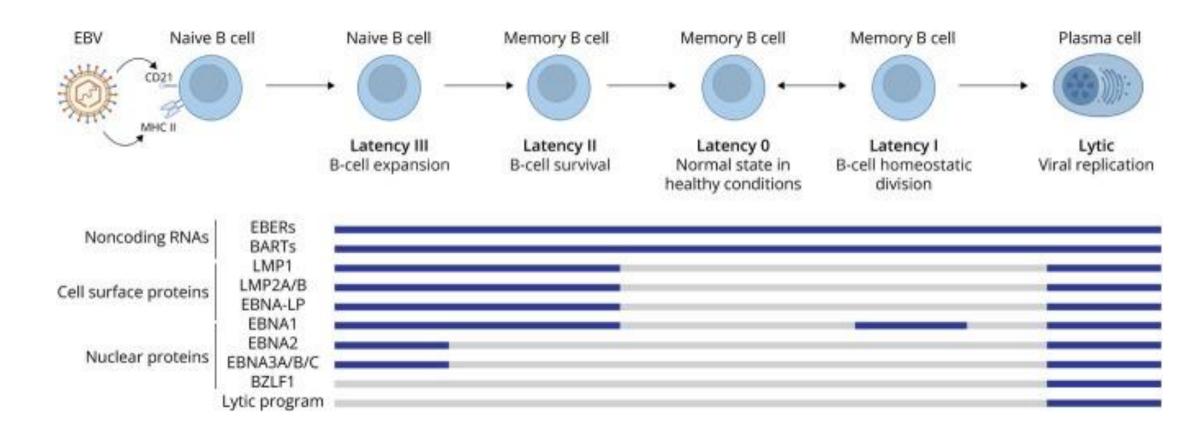
Persistent infection of human pancreatic cells with Coxsackievirus B4 is cured by fluoxetine

Enagnon Kazali Alidjinou, Famara Sané, Antoine Bertin, Delphine Caloone, Didier Hober*

Fluoxetine can inhibit coxsackievirus-B4 E2 in vitro and in vivo

Mehdi A. Benkahla^a, Enagnon Kazali Alidjinou^a, Famara Sane^a, Rachel Desailloud^b, Didier Hober^{a,*}

Un effet positif sur la production endogène d'insuline, observé à 1 an, et qui disparaît ensuite


La sclérose en plaques...

Maladie inflammatoire chronique et neurodégénérative

- 2,8 millions de personnes vivent avec la SEP dans le monde (35,9 pour 100 000 habitants)
- La prévalence de la SEP a augmenté dans toutes les régions du monde depuis 2013,
- Taux d'incidence cumulé : 2,1 pour 100 000 personnes/an
- Age moyen au diagnostic: 32 ans.
- Les femmes sont deux fois plus susceptibles que les hommes.

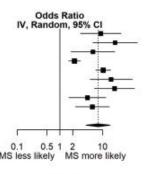
EBV, un virus aux multiples facettes

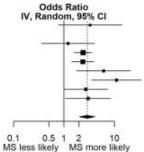
Wahbeh et Sabatino, 2025

Systematic Review

Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors

(0)

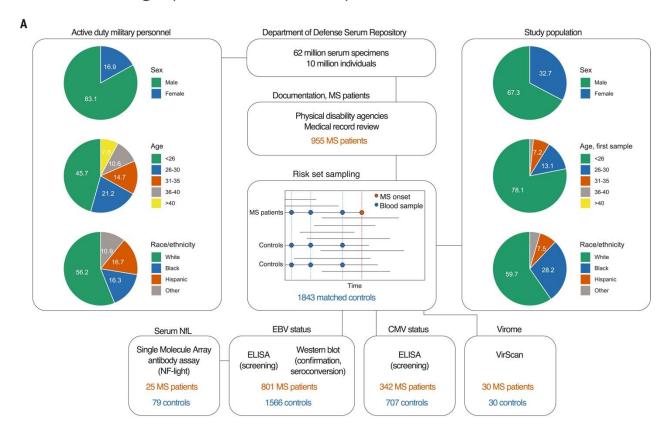

Benjamin M Jacobs , Gavin Giovannoni, Jack Cuzick and Ruth Dobson


Study	In(OR)	SE(In(OR))	Weight	OR [95% CI]
De Jager 2008	2.21	0.5595	10.3%	9.08 [3.03; 27.20]
Lucas 2011	2.99	0.6144	9.7%	19.84 [5,95; 66,15]
Pandit 2013	1.78	0.6031	9.8%	5.96 [1.83; 19.42]
Simon 2010	0.79	0.1625	14.0%	2.20 [1.60; 3.02]
Sundqvist 2011	2.34	0.2068	13.7%	10.40 [6.93; 15.59]
Sundstrom 2008	2.77	0.5837	10.0%	15.98 [5.09; 50.17]
van der Mei 2010	2.95	0.5526	10.4%	19.17 [6.49; 56.62]
van der Mei 2010	1.49	0.5101	10.8%	4.43 [1.63; 12.04]
Van der Mei 2016	1.76	0.4684	11.3%	5.81 [2.32; 14.55]

Total (95% CI) 100.0% 7.90 [4.11; 15.21] Heterogeneity: $Tau^2 = 0.7718$; $Chi^2 = 54.35$, df = 8 (P < 0.01); $I^2 = 85\%$

			(a)			
Study	In(OR)	SE(In(OR))	Weight	OR [95% CI]		
De Jager 2008	1.20	0.7406	5.3%	3.30 [0.77; 14.10]		
Lucas 2011	0.000000	107000000 W	0.0%			
Pandit 2013	0.19	0.6162	7.3%	1.21 [0.36; 4.04]		
Simon 2010	0.88	0.2069	28.6%	2.40 [1.60; 3.60]		
Sundqvist 2011	0.86	0.2574	23.8%	2.36 [1.43; 3.91]		
Sundstrom 2008	1.81	0.6231	7.2%	6.11 [1.80; 20.72]		
van der Mei 2010	2.40	0.5803	8.1%	11.04 [3.54; 34.43		
van der Mei 2010	1.00	0.5086	10.0%	2.71 [1.00; 7.34]		
Van der Mei 2016	1.11	0.5246	9.5%	3.02 [1.08; 8.44]		

Total (95% CI) 100.0% 2.90 [2.03; 4.14] Heterogeneity: Tau² = 0.0734; Chi² = 10.02, df = 7 (P = 0.19); I² = 30%



- SEP: Association à la séropositivité EBV plus fréquente
- MNI symptomatique (donc infection plus tardive): 2X plus de risque
- Ac anti-EBV: les IgG anti-EBNA patients SEP
 >>>> contrôles. Taux élevés EBNA = risque élevé de développer une SEP
- Interaction entre EBV et la prédisposition génétique: HLA-DRB1*15:01 = risque le plus élevé, associé à des taux élevés IgG EBNA

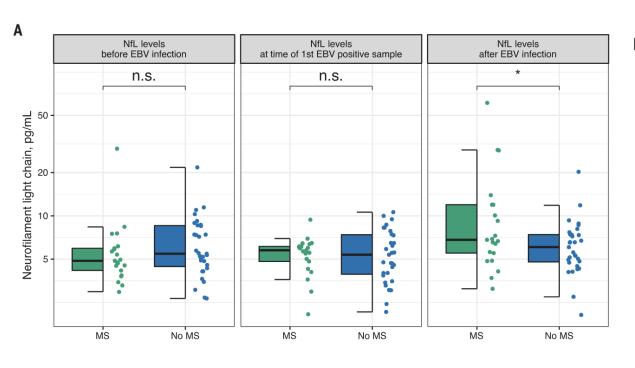
Wahbeh et Sabatino, 2025

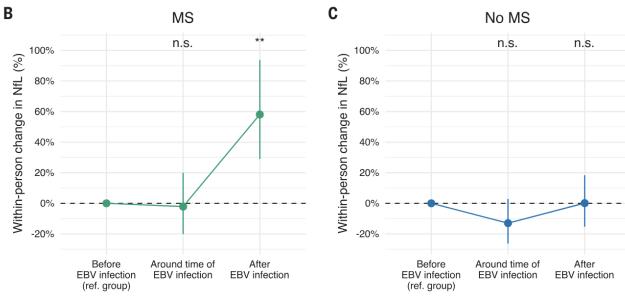
Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis

Kjetil Bjornevik¹†, Marianna Cortese¹†, Brian C. Healy^{2,3,4}, Jens Kuhle⁵, Michael J. Mina^{6,7,8}, Yumei Leng⁶, Stephen J. Elledge⁶, David W. Niebuhr⁹, Ann I. Scher⁹, Kassandra L. Munger¹‡, Alberto Ascherio^{1,10,11}*‡

Science

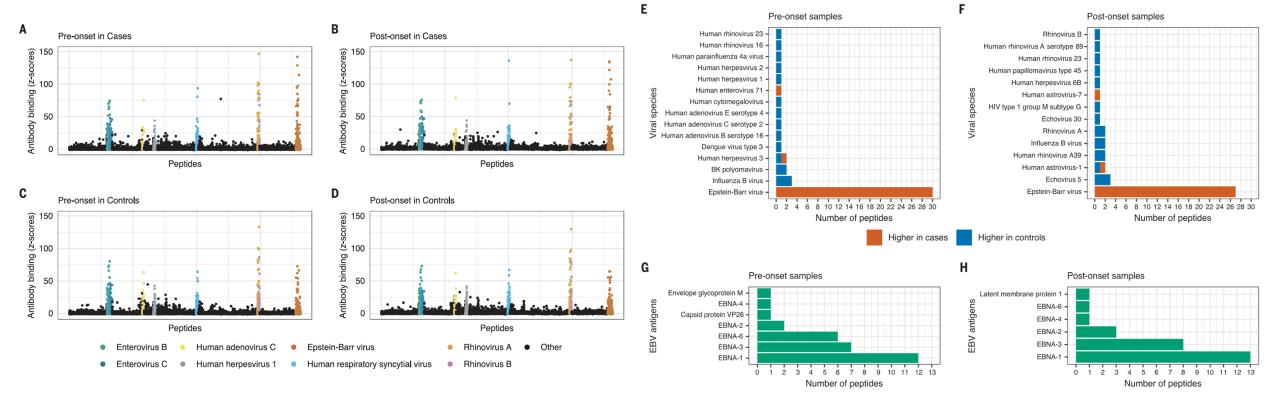
Bjornevik et al., Science **375**, 296–301 (2022) 21 January 2022




Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis

Kjetil Bjornevik¹†, Marianna Cortese¹†, Brian C. Healy^{2,3,4}, Jens Kuhle⁵, Michael J. Mina^{6,7,8}, Yumei Leng⁶, Stephen J. Elledge⁶, David W. Niebuhr⁹, Ann I. Scher⁹, Kassandra L. Munger¹‡, Alberto Ascherio^{1,10,11}*‡

Bjornevik et al., Science **375**, 296–301 (2022) 21 January 2022



Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis

Science

Kjetil Bjornevik¹†, Marianna Cortese¹†, Brian C. Healy^{2,3,4}, Jens Kuhle⁵, Michael J. Mina^{6,7,8}, Yumei Leng⁶, Stephen J. Elledge⁶, David W. Niebuhr⁹, Ann I. Scher⁹, Kassandra L. Munger¹‡, Alberto Ascherio^{1,10,11}*‡

Bjornevik et al., Science **375**, 296–301 (2022) 21 January 2022

Box 1

Epidemiological evidence supporting that EBV causes MS

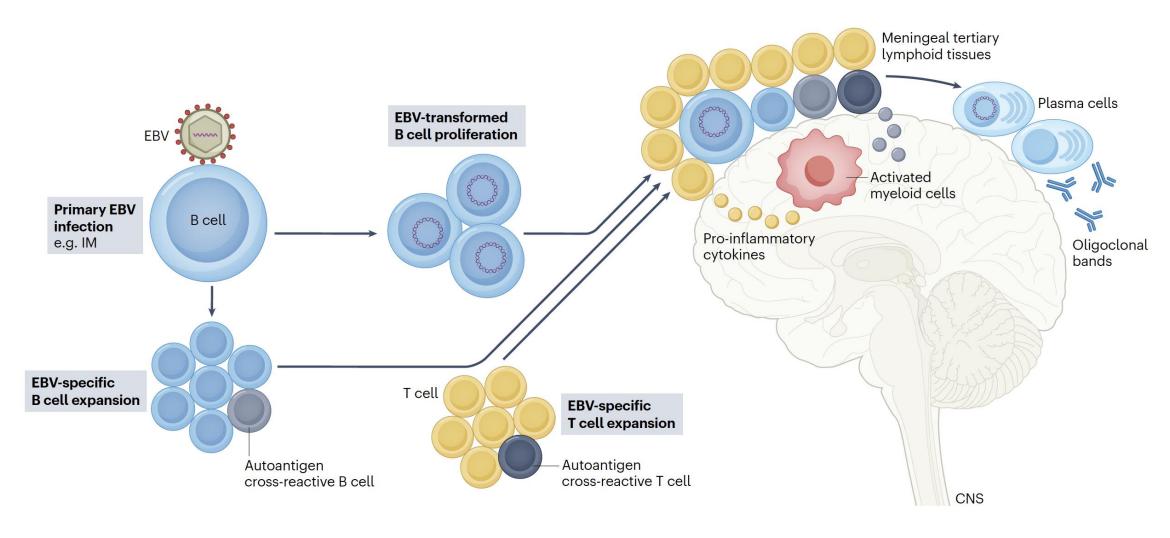
Direct evidence

This evidence is based on the extended longitudinal study of individuals who are negative for Epstein–Barr virus (EBV).

- The risk of multiple sclerosis (MS) before EBV infection is negligible²⁰
- Infection with EBV increases MS risk more than 30-fold²⁰
- EBV infection precedes elevations in blood levels of neurofilament light chain^{37,38}, a marker of neuroaxonal damage³⁶
- Infection with cytomegalovirus, which is transmitted similarly to EBV, is not followed by an increase in MS risk^{20,42}
- In a virome-wide analysis, only antibodies to EBV peptides showed enrichment in patients with MS compared with matched controls²⁰

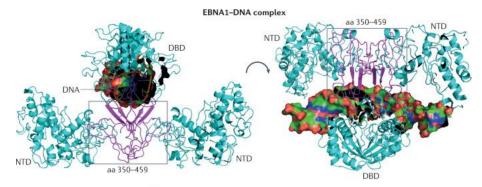
Collectively, the above results rule out confounding and reverse causation, thus providing compelling evidence of causality.

Corroborating evidence


- Infectious mononucleosis, a symptomatic EBV infection, has consistently been associated with a twofold to threefold increased MS risk¹¹, which persists for decades¹⁶
- In individuals infected with EBV, titres of antibodies to EBV are the strongest markers of future MS risk¹⁴

Comment un virus ubiquitaire peut-il conduire à la SEP chez certains individus plusieurs années après l'infection primaire?

- Processus en plusieurs étapes qui fait intervenir l'infection par le virus EBV et d'autres facteurs génétiques et/ou environnementaux.
- Prédisposition génétique (HLA-DRB1*15:01): 3-6X
- Tabagisme, obésité dans l'enfance, hypoVitD: <2X
- Interactions génétique facteurs environnementaux
- Variants génomiques EBV: EBNA-2


Aloisi et al. Lancet Neurol 2023; Goris et al. Lancet Neurol 2022

Quel scénario physiopathologique?

Munz, Nature Reviews Microbiology 2025

La piste de l'auto-immunité...

EBNA1 (aa)	Sequence	Mimic	Immune response	
386-405	SQSSSSGSPPRRPPPGRRPF	GlialCAM	IgG	
411-426	EADYFEYHQEGGPDGE	MBP	lgG	
504-518	VAGGRVYGGSKTSLY	β-SYN	HLA-DR2b	
431-440	PGAIEQGPAD	ANO2	IgG	
473-593			HLA-DRB1*15	
385-420	PPPGRRPFFHPVGEA	CRYAB	IgG + HLA-DRB*1501	
407-418	HPVGEADYFEY		CD8 + HLA-B35	
90-330(GA)n	GAGGGAGAGG		IgG	

Article

Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM

https://doi.org/10.1038/s41586-022-04432-7
Received: 6 August 2021
Accepted: 14 January 2022
Published online: 24 January 2022

© Check for updates

Tobias V. Lanz^{1,2,3,4}, R. Camille Brewer^{1,4}, Peggy P. Ho⁵, Jae-Seung Moon^{1,4}, Kevin M. Jude⁶, Daniel Fernandez⁷, Ricardo A. Fernandes⁶, Alejandro M. Gomez^{1,4}, Gabriel-Stefan Nadj^{1,4}, Christopher M. Bartley⁸, Ryan D. Schubert⁹, Isobel A. Hawes⁹, Sara E. Vazquez¹⁰, Manasi Iyer¹¹, J. Bradley Zuchero¹¹, Bianca Teegen¹², Jeffrey E. Dunn¹³, Christopher B. Lock¹³, Lucas B. Kipp¹³, Victoria C. Cotham^{14,15}, Beatrix M. Ueberheide^{14,15}, Blake T. Aftab¹⁶, Mark S. Anderson¹⁷, Joseph L. DeRisi^{10,18}, Michael R. Wilson⁹, Rachael J. M. Bashford-Rogers¹⁹, Michael Platten^{2,3,20}, K. Christopher Garcia⁶, Lawrence Steinman⁵ & William H. Robinson^{1,452}

Soldan et Lieberman, Nat Rev Microbiol. 2022

RESEARCH ARTICLE

IMMUNOLOGY AND INFLAMMATION

2025

Antibody reactivity against EBNA1 and GlialCAM differentiates multiple sclerosis patients from healthy controls

Neda Sattarnezhad^{e,b,1}, Ingrid Kockum^{c,d,1}, Olivia G. Thomas^{c,e}, Yicong Liu^{c,d}, Peggy P. Ho^f, Alison K. Barrett^g, Alexandros I. Comanescu^g, Tilini U. Wijeratne^e, Paul J. Utz^e, Lars Alfredsson^{c,h}, Lawrence Steinman^{f,2}, william H. Robinson^{e,i}, Tomas Olsson^{c,d,1,2}, and Tobias V. Lanz^{e,g,1,2}

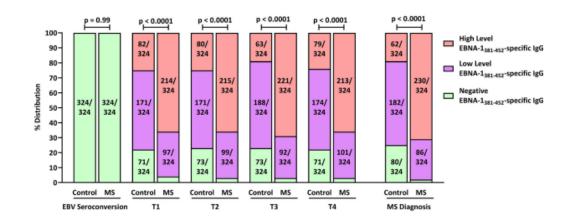
2022

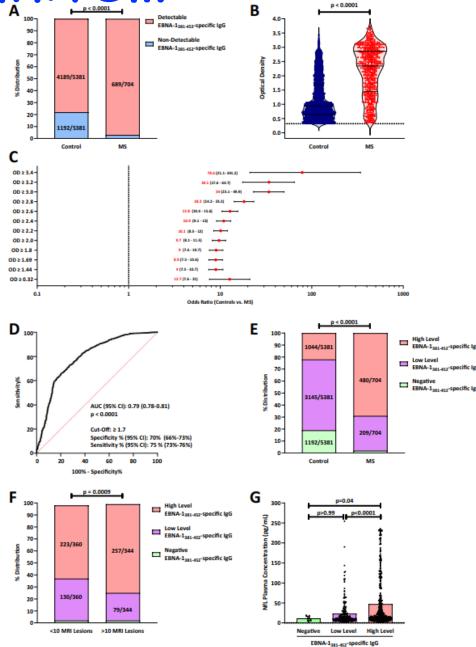
La piste de l'auto-immunité...

nature communications

<u>a</u>

Article


https://doi.org/10.1038/s41467-025-61751-9


Early identification of individuals at risk for multiple sclerosis by quantification of EBNA-1₃₈₁₋₄₅₂-specific antibody titers

Received: 13 May 2025
Accepted: 1 July 2025
Published online: 14 July 2025

B Check for updates

Hannes Vietzen ®¹ ⊡, Laura M. Kühner ®¹, Sarah M. Berger ®¹, Markus Ponleitner ®²³, Marianne Graninger¹, Charlotte Pistorius⁴, Christof Jungbauer ®⁴.⁵, Markus Reindl ®⁶, Henrieke Saucke², Franziska Kauth², Eva-Maria Wendel⁶, Kevin Rostásy², Markus Breu ®²³, Barbara Kornek²³, Gabriel Bsteh²³, Thomas Berger ®²³, Paulus Rommer ®²³, & Elisabeth Puchhammer-Stöckl¹.⁵

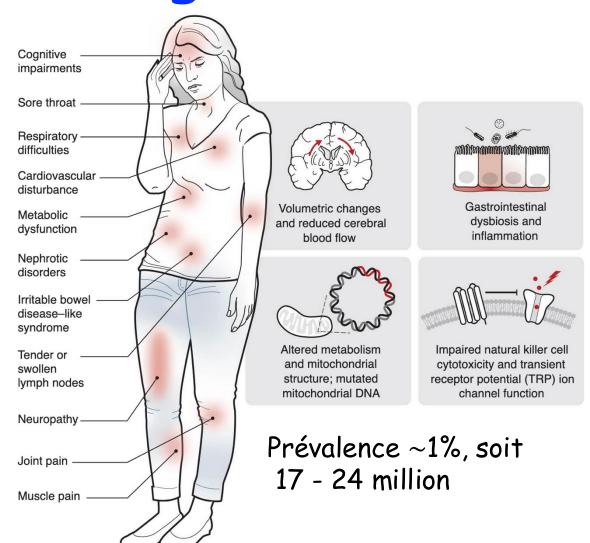
EBV et SEP: perspectives

W Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy

Lancet Neurol 2023; 22: 338-49

Francesca Aloisi, Gavin Giovannoni, Marco Salvetti CIS or clinical Definite multiple At risk High risk Subclinical or RIS **Prodromal or RIS** progressive onset sclerosis Lancet Neurol 2023; 22: 338-49 Genetic background, low ultra-violet light exposure or vitamin D **EBV** levels, childhood obesity, With or without OCB With or without OCB With OCB With OCB infection: High or cigarette smoking EBNA-1 dose in Neurodegeneration onset: Increased and Increased EBVinoculum, lgG raise in neurofilament specific T-cell dysfunctional EBVgenetic light serum levels specific T-cell response in CIS variants? response Secondary prevention: therapeutic EBV vaccine or other vaccine Primary prevention: EBV-targeting therapies: therapeutic vaccine, T-cell prophylactic EBV immunotherapy, antivirals vaccine

De l'EM/SFC au Covid long...


ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature

Anthony L. Komaroff^{1*} and W. lan Lipkin²

The persistence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) after SARS-CoV-2 infection: A systematic review and meta-analysis

Ankush Dehlia, Mark A. Guthridge *

Results: We identified 13 eligible studies that reported a total of 1973 LC patients. Our meta-analysis indicated that 51% (95% CI, 42%–60%) of LC patients satisfied ME/CFS diagnostic criteria, with fatigue, sleep disruption, and muscle/joint pain being the most common symptoms. Importantly, LC patients also experienced the ME/CFS hallmark symptom, post-exertional malaise.

Marshall-Gradisnik and Eaton-Fitch, Science 2022

Conclusion

- Aucun doute: les virus peuvent entraîner des maladies chroniques...
- Toutes les associations ne sont pas robustes
- La preuve formelle de causalité est difficile à obtenir
- Perspective: utiliser des approches de prévention ou de traitement pour démontrer le lien de causalité

